Introduction
Apple is an experimental compiler with a working though
not-perfectly-designed typed frontend. The language is missing the
ability to sort an array but otherwise capable.
Installation
The REPL and typechecker are available on the release page .
Reference Card
In the REPL, type \l
.
> \l
Λ scan √ sqrt
⋉ max ⋊ min
⍳ integer range ⌊ floor
ℯ exp ⨳ {m,n} convolve
\~ successive application \`n infix
_. log 'n map
` zip `{i,j∘[k,l]} rank
𝒻 range (real) 𝜋 pi
⋮
Use :ty
for more:
> :ty (⊲)
a → Vec i a → Vec (i + 1) a
:help
inside the REPL:
> :help
:help, :h Show this help
:ty <expression> Display the type of an expression
:ann <expression> Annotate with types
:bench, :b <expression> Benchmark an expression
:list List all names that are in scope
⋮
Editor Integration
There is a vim plugin
and a VSCode
extension .
The file extension is .🍎
or .🍏
.
Capabilities
Integer Range
To generate an integer range use irange
or
⍳
(APL iota).
> ⍳
⍳ : int → int → int → Vec #n int
⍳
takes a start value, end value, and step size as
arguments, viz.
> ⍳ 0 9 1
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
> irange 30 0 _3
[30, 27, 24, 21, 18, 15, 12, 9, 6, 3, 0]
Note that _
is used for negative literals.
Real Range
For a range of real numbers, use frange
or
𝒻
.
> :ty frange
float → float → int → Vec #n float
frange
takes a start value, an end value, and the number
of steps.
> frange 0 9 10
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
Map
'
maps over an array.
> (*2)'⍳ 0 9 1
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Functions can be curried .
Zip
Pick the greater value among two vectors:
> (⋉)`⟨0,_1,3.0⟩ ⟨_3,1,3⟩
Vec 3 [0.0, 1.0, 3.0]
Fold
/
folds over an array.
> (+)/⍳ 1 100 1
5050
Scan
> (+)Λ (irange 1 3 1)
Vec 3 [1, 3, 6]
Array Literals
Array literals are delineated by ⟨
…⟩
.
> ⟨_1,0::int⟩
[-1, 0]
> ⟨⟨0,1⟩,⟨_1,0::int⟩⟩
[ [0, 1]
, [-1, 0] ]
Reverse
~
reverses an array.
> ~(irange 0 9 1)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
Reverse applied to a higher-dimensional array reverses elements
(sub-arrays) along the first dimension.
> ⟨⟨0,1⟩,⟨1,0::int⟩,⟨2,4⟩⟩
[ [0, 1]
, [1, 0]
, [2, 4] ]
> ~⟨⟨0,1⟩,⟨1,0::int⟩,⟨2,4⟩⟩
[ [2, 4]
, [1, 0]
, [0, 1] ]
> ~'⟨⟨0,1⟩,⟨1,0::int⟩,⟨2,4⟩⟩
[ [1, 0]
, [0, 1]
, [4, 2] ]
Outer Product
The outer product ⊗
creates a table by applying some
function.
> :ty \f.\x.\y. x f⊗ y
(a → b → c) → Arr sh0 a → Arr sh1 b → Arr (sh0 ⧺ sh1) c
> (frange 0 9 10) (*)⊗ (frange 0 9 10)
[ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
, [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
, [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0]
, [0.0, 3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0, 27.0]
, [0.0, 4.0, 8.0, 12.0, 16.0, 20.0, 24.0, 28.0, 32.0, 36.0]
, [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0]
, [0.0, 6.0, 12.0, 18.0, 24.0, 30.0, 36.0, 42.0, 48.0, 54.0]
, [0.0, 7.0, 14.0, 21.0, 28.0, 35.0, 42.0, 49.0, 56.0, 63.0]
, [0.0, 8.0, 16.0, 24.0, 32.0, 40.0, 48.0, 56.0, 64.0, 72.0]
, [0.0, 9.0, 18.0, 27.0, 36.0, 45.0, 54.0, 63.0, 72.0, 81.0] ]
> (frange 0 4 5) [(x,y)]⊗ (frange 0 4 5)
[ [(0.0*0.0), (0.0*1.0), (0.0*2.0), (0.0*3.0), (0.0*4.0)]
, [(1.0*0.0), (1.0*1.0), (1.0*2.0), (1.0*3.0), (1.0*4.0)]
, [(2.0*0.0), (2.0*1.0), (2.0*2.0), (2.0*3.0), (2.0*4.0)]
, [(3.0*0.0), (3.0*1.0), (3.0*2.0), (3.0*3.0), (3.0*4.0)]
, [(4.0*0.0), (4.0*1.0), (4.0*2.0), (4.0*3.0), (4.0*4.0)] ]
Reshape
♭
flattens an array to a vector, ♯
adds a
dimension.
> :ty λA. ♭ (A::Arr (28×28×1) a)
Arr (28 × 28 × 1) a → Vec 784 a
> ♯ (irange 0 9 1)
Arr (1×10) [ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ]
Successive Application
> :ty (\~)
(a → a → b) → Arr (i + 1 `Cons` sh) a → Arr (i `Cons` sh) b
[(-)\~ x]
gives successive differences.
> (-)\~ ((^2)'(frange 0 9 10))
[1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0]
Rotate
> (⊖)
(⊖) : int → Vec i a → Vec i a
> 2 ⊖ irange 0 9 1
[2, 3, 4, 5, 6, 7, 8, 9, 0, 1]
> _2 ⊖ irange 0 9 1
[8, 9, 0, 1, 2, 3, 4, 5, 6, 7]
> 2 ⊖ ⟨⟨1,2⟩,⟨3,4⟩,⟨5,6.0⟩⟩
Arr (3×2) [ [5.0, 6.0]
, [1.0, 2.0]
, [3.0, 4.0] ]
Cycle
cyc.
or ⊙
(infix) concatenates an array
with itself a specified number of times.
> cyc. ⟨0::int,1⟩ 4
Vec 8 [0, 1, 0, 1, 0, 1, 0, 1]
> ⟨0::int,1⟩⊙4
Vec 8 [0, 1, 0, 1, 0, 1, 0, 1]
Repeat
> re: 3 ⟨1.0,0⟩
Arr (3×2) [ [1.0, 0.0]
, [1.0, 0.0]
, [1.0, 0.0] ]
Transpose
⍉ or |:
> ⍉ ⟨⟨1.0,3⟩,⟨4,4⟩,⟨2,_2⟩⟩
[ [1.0, 4.0, 2.0]
, [3.0, 4.0, -2.0] ]
> ⟨⟨1.0,3⟩,⟨4,4⟩,⟨2,_2⟩⟩
[ [1.0, 3.0]
, [4.0, 4.0]
, [2.0, -2.0] ]
Unfold
> gen. (1::int) (*2) 10
Vec 10 [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
Infix
Moving average:
> [(+)/x%ℝ(:x)]\` 7 (frange 0 9 10)
[3.0, 4.0, 5.0, 6.0]
> [x]\`4 (frange 0 5 6)
[ [0.0, 1.0, 2.0, 3.0]
, [1.0, 2.0, 3.0, 4.0]
, [2.0, 3.0, 4.0, 5.0] ]
Bind
> {i←2::int;i*i}
4
Bind, preventing inlining:
> {i⟜2::int;i*i}
4
One can see that 2
is stored in a register by inspecting
the generated assembly:
> :asm {i←2::int;i*i}
mov x0, #0x4
ret
> :asm {i⟜2::int;i*i}
mov x0, #0x2
mul x0, x0, x0
ret
Polymorphic Bind
> {sum ⇐ [(+)/x]; sum (irange 0 9 1)+⌊(sum(frange 0 9 10))}
90
> {sum ← [(+)/x]; sum (irange 0 9 1)+⌊(sum(frange 0 9 10))}
1:42: could not unify 'float' with 'int' in expression '𝒻 0 9 10'
Rank
Rank `{i,j∘[k,l]}
lifts a function to operate on i,
j-cells, optionally specifying axes k,l. Iteration is bottom-up; by
contrast map '
cuts across the leading dimension.
To make a scalar function apply to arrays, re-rank
> :ty ((*)`{0,0})
(IsNum c) :=> Arr sh c → Arr sh c → Arr sh c
Sigmoid on an arbitrary-dimension array:
([1%(1+ℯ(_x))]`{0})
> ⟨⟨0,1,2⟩,⟨3,4,5::int⟩⟩
Arr (2×3) [ [0, 1, 2]
, [3, 4, 5] ]
> ((+)/)`{1} ⟨⟨0,1,2⟩,⟨3,4,5::int⟩⟩
Vec 3 [3, 5, 7]
> ((+)/)`{1∘[2]} ⟨⟨0,1,2⟩,⟨3,4,5::int⟩⟩
Vec 2 [3, 12]
This may be confusing; Apple’s rank feature was poorly designed.
Take 0-cells (scalars) from the first array and 1-cells from the
second.
> (⊲)`{0,1∘[2]} ⟨0::int,1⟩ ⟨⟨2,3⟩,⟨4,5⟩⟩
Arr (2×3) [ [0, 2, 3]
, [1, 4, 5] ]
> ⍉ ((2 ⊖)`{1} ⟨⟨1,2⟩,⟨3,4⟩,⟨5,6.0⟩⟩)
Arr (3×2) [ [5.0, 6.0]
, [1.0, 2.0]
, [3.0, 4.0] ]
> :ty [♭`{3∘[2,3,4]} (x :: Arr (60000 × 28 × 28 × 1) float)]
Arr (60000 × 28 × 28 × 1) float → Arr (60000 × 784) float
Random Numbers
𝔯
or rand.
> 𝔯 0 1 :: float
0.582699021207219
> 𝔯 0 1 :: Arr (3 × 3) float
Arr (3×3) [ [0.9827522631010304, 0.30678513061418045, 0.6008551364891055]
, [0.608715653358658, 0.2124387982011875, 0.8858951305876062]
, [0.30465710174579286, 0.15185986406856955, 0.33766190287353126] ]
Tuples
Use ->n
to access the n
th element of a
tuple, viz.
> (1.0,#t,4::int)->1
1.0
> (1.0,#t,4::int)->2
#t
> (1.0,#t,4::int)->3
4
Convolve
Convolve (⨳ {m,n})
is like infix
for higher-rank windows.
> [(⋉)/x] ⨳ {3} ⟨_1,0,4,_2,3,3,1,1,0,_5.0⟩
Vec 8 [4.0, 4.0, 4.0, 3.0, 3.0, 3.0, 1.0, 1.0]
> [(⋉)/x] \`3 ⟨_1,0,4,_2,3,3,1,1,0,_5.0⟩
Vec 8 [4.0, 4.0, 4.0, 3.0, 3.0, 3.0, 1.0, 1.0]
> ([(+)/* 0 (x::Arr (2×3) float)%ℝ(:x)] ⨳ {2,3}) ⟨⟨1.0,2,0,0⟩,⟨_1,_2,3,4⟩,⟨5,6,3,1⟩,⟨3,1,1,3⟩⟩
Arr (3×2) [ [0.5, 1.1666666666666665]
, [2.333333333333333, 2.5]
, [3.1666666666666665, 2.5] ]
REPL Functionality
Load
> :yank chisqcdf math/chisqcdf.🍎
> chisqcdf 10 28
0.9982004955179669
math/chisqcdf.🍎
is a file that contains an expression
of type float → float→ float
.
Benchmark
> :bench frange 0 999 1000
benchmarking...
time 1.423 μs (1.417 μs .. 1.427 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 1.426 μs (1.422 μs .. 1.429 μs)
std dev 11.94 ns (9.819 ns .. 14.22 ns)
QuickCheck
Apple can generate shape-correct test cases for property testing. For
instance,
> :qc \x. [(+)/(*)`x y] x x >= 0.0
Passed, 100.
tests that the dot product of a vector with itself is
nonnegative.
Exotic Syntax
Coronis
Instead of
{x←y;z}
One can write
⸎x←y;z
Using the typographical
coronis .
Matrix Dimensions
One can specify matrix dimensions in a type signature with unicode
subscript digits separated by a comma.
𝔯 0 1 :: M ₁₂,₁₂ float
is equivalent to
𝔯 0 1 :: Arr (12 × 12) float
Identity Matrix
👁️ can be used in place of eye.
for the identity
matrix.
Identifiers
Identifiers may be latin or greek characters, or a single character
from the mathematical greek or mathematical latin unicode block,
optionally followed by some subscript alphanumeric characters. The
single-character lambda λ
is reserved. ∫
,
𝛻
, and ∇
are also identifiers but may not be
followed by a subscript.
Thus pxs
, aₙ
, sn₁
,
𝐶
, φs
, 𝜉
, and 𝜌₀
are
valid identifiers but 𝜉s
is not.
Vulgar Fractions
Unicode vulgar fractions are considered float literals:
> ⅚
0.8333333333333334
One can use ⅟
for the reciprocal, viz.
> [⅟(1+ℯ(_x))]
λx. 1.0 % (1 + 2.718281828459045 ** _ x) : float → float
Time
In the REPL, one can use ⏱
in place of
:bench
, i.e.
⏱ [(+)/x%ℝ(:x)]\`7 (𝒻 0 999 1000)
Examples
Cross Product
The cross product of two vectors \((a_1,a_2,a_3)\) , \((b_1,b_2,b_3) \in \mathbb{R}^3\) is the
vector \(\in\mathbb{R}^3\)
\[(a_2b_3-a_3b2,
a_3b1-a_1b3,a_1b_2-a_2b_1)\]
In Apple, we can write:
λa.λb. (-)`((*)`(1⊖a) (_1⊖b)) ((*)`(_1⊖a) (1⊖b))
This uses zips and rotations (no indices are mentioned); it is a new
perspective on the problem.
Linear Regression
λxs.λys.
{
Σ ← [(+)/x];
n ⟜ ℝ(:xs);
xbar ⟜ (Σ xs) % n; ybar ⟜ (Σ ys) % n;
xy ⟜ Σ ((*)`xs ys);
x2 ⟜ Σ ((^2)'xs);
denom ⟜ (x2-n*(xbar^2));
a ← ((ybar*x2)-(xbar*xy))%denom;
b ← (xy-(n*xbar*ybar))%denom;
(a,b)
}
Note the ⟜
to prevent expressions from being
inlined.
Kullback-Leibler Divergence
λp.λq. (+)/([x*_.(x%y)]`p q)
Numerically Stable Geometric
Mean
λxs.
⸎ avg ← [{n ⟜ ℝ(:xs); ((+)/xs)%n}]
; e:(avg (_.'xs))
Array Strides
λds. }:((*)Λₒ 1::int ds)
(Column-major order)
Train Neural Network
λwh.λwo.λbh.λbo.
{ X ⟜ ⟨⟨0,0⟩,⟨0,1⟩,⟨1,0⟩,⟨1,1⟩⟩;
Y ⟜ ⟨0,1,1,0⟩;
sigmoid ← [1%(1+ℯ(_x))];
sDdx ← [x*(1-x)];
sum ⇐ [(+)/x];
ho ⟜ sigmoid`{0} ([(+)`bh x]'(X%.wh));
prediction ⟜ (sigmoid ∴ (+bo))'(ho%:wo);
l1E ← (-)`Y prediction;
l1Δ ⟜ (*)`(sDdx'prediction) l1E;
he ← l1Δ (*)⊗ wo;
hΔ ⟜ (*)`{0,0} (sDdx`{0} ho) he;
wha ← (+)`{0,0} wh ((|:X)%.hΔ);
woa ← (+)`wo ((|:ho)%:l1Δ);
bha ← [(+)/ₒ x y]`{0,1} bh hΔ;
boa ← bo + sum l1Δ;
(wha,woa,bha,boa)
}
This is equivalent to the Python :
import numpy as np
def sigmoid (x):
return 1 / (1 + np.exp(- x))
def sigmoid_derivative(x):
return x * (1 - x)
inputs = np.array([[0 ,0 ],[0 ,1 ],[1 ,0 ],[1 ,1 ]])
expected_output = np.array([[0 ],[1 ],[1 ],[0 ]])
hidden_layer_activation = np.dot(inputs,hidden_weights)
hidden_layer_activation += hidden_bias
hidden_layer_output = sigmoid(hidden_layer_activation)
output_layer_activation = np.dot(hidden_layer_output,output_weights)
output_layer_activation += output_bias
predicted_output = sigmoid(output_layer_activation)
#Backpropagation
error = expected_output - predicted_output
d_predicted_output = error * sigmoid_derivative(predicted_output)
error_hidden_layer = d_predicted_output.dot(output_weights.T)
d_hidden_layer = error_hidden_layer * sigmoid_derivative(hidden_layer_output)
#Updating Weights and Biases
output_weights += hidden_layer_output.T.dot(d_predicted_output)
output_bias += np.sum (d_predicted_output,axis= 0 ,keepdims= True )
hidden_weights += inputs.T.dot(d_hidden_layer)
hidden_bias += np.sum (d_hidden_layer,axis= 0 ,keepdims= True )
If a polygon has vertices at \(x_n\) , \(y_n\) , then its area is given by
\[A=\frac{1}{2}\Biggl|(x_1y_2+x_2y_3+\cdots+x_ny_1)-(y_1x_2+y_2x_3+\cdots+y_nx_1)\Biggr|\]
λxs.λys.
{ sum ⇐ [(+)/x]
; 0.5*abs.(sum((*)`xs (1⊖ys)) - sum((*)`(1⊖xs) ys))
}
Note the array style: ⊖
, ` (zip), and fold are enough to
eschew pointful definitions.
Polynomials
Evaluation
λp.λx. ~p⋅gen. 1 (*x) (𝓉p)
Covariance Matrix
Given a \(K \times N\) matrix of
\(N\) obervations on \(K\) variables, we can compute the sample
covariance matrix thusly:
λxs.
{
𝜇 ← [⸎n⟜ ℝ(:x); (+)/x%n]; rs ← 𝜇'xs;
nd ⟜ [(-x)'y]`{0,1∘[2]} rs xs;
N ⟜ ℝ(:({.xs))-1;
nd [x⋅y%N]⊗ nd
}
The array style gives a new take on the problem.
Array
To take all but the last 6 elements:
[{.\`7 x]
To drop the first 6 elements:
[}.\`7 x]
Take the first 7 elements:
> {. ([x] \`7 (irange 0 9 1))
Vec 7 [0, 1, 2, 3, 4, 5, 6]
Take the last 7 elements:
> }. ([x] \`7 (irange 0 9 1))
Vec 7 [3, 4, 5, 6, 7, 8, 9]
Matrix-Vector Multiplication
λA.λx.
{
dot ⇐ [(+)/((*)`x y)];
(dot x)`{1∘[2]} (A::Arr (i × j) float)
}
Filter
\p.\xs. (xs˙)'p⩪xs
[{m⟜(⋉)/x::Vec n float; (=m)@.x}]
λxs.
{ digitSum ← [?x>10,.x-9,.x]
; t ← (+)/ [digitSum (x*y)]`(~(}:xs)) (}: (cyc. ⟨2,1::int⟩ 8))
; 10-(t|10)=}.xs
}
Note zipping with cyc. ⟨2,1::int⟩ 8
to get alternating
2, 1, … factors.
Elliptic Fourier Series
From Kuhl
and Giardnia , the coefficients are given by:
\[ a_n = \frac{T}{2n^2\pi^2}\sum_{p=1}^K
\frac{\Delta x_p}{\Delta t_p}\left(\cos\frac{2n\pi t_p}{T} -
\cos\frac{2n\pi t_{p-1}}{T}\right) \]
\[ b_n = \frac{T}{2n^2\pi^2}\sum_{p=1}^K
\frac{\Delta x_p}{\Delta t_p}\left(\sin\frac{2n\pi t_p}{T} -
\sin\frac{2n\pi t_{p-1}}{T}\right) \]
\[ c_n = \frac{T}{2n^2\pi^2}\sum_{p=1}^K
\frac{\Delta y_p}{\Delta t_p}\left(\cos\frac{2n\pi t_p}{T} -
\cos\frac{2n\pi t_{p-1}}{T}\right) \]
\[ d_n = \frac{T}{2n^2\pi^2}\sum_{p=1}^K
\frac{\Delta y_p}{\Delta t_p}\left(\sin\frac{2n\pi t_p}{T} -
\sin\frac{2n\pi t_{p-1}}{T}\right) \]
The offsets are given by:
\[ A_0 = \frac{1}{T} \sum_{p=1}^K
\left[\frac{\Delta x_p}{2\Delta t_p} (t_p^2-t_{p-1}^2) + \xi_p
(t_p-t_{p-1}^2)\right]\]
\[ C_0 = \frac{1}{T} \sum_{p=1}^K
\left[\frac{\Delta y_p}{2\Delta t_p} (t_p^2-t_{p-1}^2) + \delta_p
(t_p-t_{p-1}^2)\right]\]
where
\[ \xi_p = \sum_j^{p-1} \Delta x_j -
\frac{\Delta x_p}{\Delta t_p} \sum_j^{p-1}\Delta t_j \]
\[ \delta_p = \sum_j^{p-1} \Delta y_j -
\frac{\Delta y_p}{\Delta t_p} \sum_j^{p-1}\Delta t_j \]
\[ \xi_0,~\delta_0 = 0 \]
In Apple we can generate the first N
coefficients
alongside the offsets with:
λxs.λys.λN.
{ sum ← [(+)/x]
; tieSelf ← [({.x)⊳x]; Δ ← [(-)\~(tieSelf x)]
; dxs ⟜ Δ xs; dys ⟜ Δ ys
; dts ⟜ [√(x^2+y^2)]`dxs dys
; dxss ⟜ ((%)`dxs dts); dyss ⟜ ((%)`dys dts)
; pxs ← (+)Λ dxs; pys ← (+)Λ dys; pts ⟜ (+)Λₒ 0 dts; T ⟜}. pts
; coeffs ← λn.
{ n ⟜ ℝn; k ⟜ 2*n*𝜋%T
; c ⟜ T%(2*n^2*𝜋^2)
; cosDiffs ⟜ (-)\~([cos.(k*x)]'pts)
; sinDiffs ⟜ (-)\~([sin.(k*x)]'pts)
; aₙ ← c*sum ((*)`dxss cosDiffs)
; cₙ ← c*sum ((*)`dyss cosDiffs)
; bₙ ← c*sum ((*)`dxss sinDiffs)
; dₙ ← c*sum ((*)`dyss sinDiffs)
; (aₙ,bₙ,cₙ,dₙ)
}
; dtss ⟜ (-)\~((^2)'pts)
; ppts ⟜ {: pts
; 𝜉 ← (-)`pxs ((*)`((%)`dxs dts) ppts)
; 𝛿 ← (-)`pys ((*)`((%)`dys dts) ppts)
; A ← (0.5*sum ((*)`((%)`dxs dts) dtss) + sum ((*)`𝜉 dts))%T
; C ← (0.5*sum ((*)`((%)`dys dts) dtss) + sum ((*)`𝛿 dts))%T
; (coeffs'(irange 1 N 1),A,C)
}
Note the array style, e.g. (-)\~
to define successive
differences on an array rather than definining pointfully.
Geography
Let 𝜆₀, 𝜑₀ be the coördinates of the origin, 𝜑₁, 𝜑₂ standard
parallels, φs
and lambdas
the longitudes and
latitudes, respectively.
\𝜆₀.\𝜑₀.\𝜑₁.\𝜑₂.\φs.\lambdas.
{
𝑛 ⟜ (sin. 𝜑₁+sin.𝜑₂)%2;
𝐶 ⟜ (cos. 𝜑₁)^2+2*𝑛*sin. 𝜑₁;
𝜌₀ ⟜ √(𝐶-2*𝑛*sin. 𝜑₀)%𝑛;
albers ← \𝜑.\𝜆.
{
𝜃 ⟜ 𝑛*(𝜆-𝜆₀);
𝜌 ⟜ √(𝐶-2*𝑛*sin. 𝜑)%𝑛;
(𝜌*sin. 𝜃, 𝜌₀-𝜌*cos. 𝜃)
};
albers`φs lambdas
}
Number Theory
Primality Check
λn.¬((∨)/ₒ #f ([(n|x)=0]'(⍳ 2 (⌊(√(ℝn))) 1)))
Radical
Compute the radical of an integer \(n\) , \(\displaystyle \prod_{p|n} p\)
λn.
{ ni ⟜ ⌊(√(ℝn))
; pns ← ⍳ 2 ni 1
; isPrime ← λn.¬((∨)/ₒ #f ([(n|x)=0]'(⍳ 2 (⌊(√(ℝn))) 1))); pf ⇐ (isPrime #.)
; pps ⟜ (λk. ((n|k)=0)) #. pns
; ?ni^2=n
,.((*)/ₒ 1 (pf (pps⧺(n/.)'(}:? pps))))
,.((*)/ₒ 1 (pf (n ⊲ pps⧺((n/.)'pps))))
}
This shows the awkwardness of an array style.
Python Extension Module
Sample Normal Distribution
To generate normally distributed random values, we can use
\[ X = \sqrt{-2 \log B_1} \cos (2\pi B_2)
\]
where \(B_1\) , \(B_2\) are uniformly distributed \(\in [0,1)\) .
Debugging randomness is fraught, so we turn to Python’s visualization
libraries.
Out[4]:
(array([ 14., 47., 126., 206., 289., 170., 96., 42., 9., 1.]),
array([-2.93368273, -2.26350525, -1.59332778, -0.9231503 , -0.25297283,
0.41720465, 1.08738213, 1.7575596 , 2.42773708, 3.09791456,
3.76809203]),
<BarContainer object of 10 artists>)