- unfix : Fix f ->
f (Fix f)
Unfix a 'Fix f'
- lambek : Recursive f
t =>
Corecursive f
t =>
t ->
f t
Lambek's lemma assures us this function always exists.
- fix : f (Fix f) ->
Fix f
Create a fix-point with a functor
- colambek : Recursive f
t =>
Corecursive f
t =>
f t ->
t
The dual of Lambek's lemma.
- data StreamF : Type ->
Type ->
Type
- Pipe : a ->
b ->
StreamF a
b
- data Nu : (f : Type ->
Type) ->
Type ->
Type
Nu fix-point functor for coinduction
- NuF : ((a ->
f a) ->
a) ->
b ->
Nu f
b
- data Mu : (Type ->
Type) ->
Type
Mu fix-point functor for induction
- MuF : ((a ->
f a) ->
a) ->
Mu f
- data ListF : Type ->
Type ->
Type
- NilF : ListF _
_
- Cons : a ->
b ->
ListF a
b
- data Fix : (Type ->
Type) ->
Type
Fix-point data type for exotic recursion schemes of various kinds
- Fx : f (Fix f) ->
Fix f